Fast Summed-Area Table Generation and its Applications
Abstract
We introduce a technique to rapidly generate summed-area tables using graphics hardware. Summed area tables, originally introduced by Crow, provide a way to filter arbitrarily large rectangular regions of an image in a constant amount of time. Our algorithm for generating summed-area tables, similar to a technique used in scientific computing called recursive doubling, allows the generation of a summed-area table in O(log n) time.
We also describe a technique to mitigate the precision requirements of summed-area tables. The ability to calculate and use summed-area tables at interactive rates enables numerous interesting rendering effects. We present several possible applications. First, the use of summed-area tables allows real-time rendering of interactive, glossy environmental reflections. Second, we present glossy planar reflections with varying blurriness dependent on a reflected object’s distance to the reflector. Third, we show a technique that uses a summed-area table to render glossy transparent objects. The final application demonstrates an interactive depth-of-field effect using summed-area tables.