
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24 (2005), Number 3

Fast Summed-Area Table Generation and its Applications

Justin Hensley1, Thorsten Scheuermann2, Greg Coombe1, Montek Singh1 and Anselmo Lastra1

1University of North Carolina, Chapel Hill, NC, USA — {hensley, coombe, montek, lastra}@cs.unc.edu
2ATI Research, Marlborough, MA, USA — thorsten@ati.com

Abstract
We introduce a technique to rapidly generate summed-area tables using graphics hardware. Summed area ta-
bles, originally introduced by Crow, provide a way to filter arbitrarily large rectangular regions of an image in
a constant amount of time. Our algorithm for generating summed-area tables, similar to a technique used in sci-
entific computing called recursive doubling, allows the generation of a summed-area table in O(log n) time. We
also describe a technique to mitigate the precision requirements of summed-area tables. The ability to calculate
and use summed-area tables at interactive rates enables numerous interesting rendering effects. We present sev-
eral possible applications. First, the use of summed-area tables allows real-time rendering of interactive, glossy
environmental reflections. Second, we present glossy planar reflections with varying blurriness dependent on a
reflected object’s distance to the reflector. Third, we show a technique that uses a summed-area table to render
glossy transparent objects. The final application demonstrates an interactive depth-of-field effect using summed-
area tables.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Color, shading, shadowing, and texture I.4.3 [Image Processing and Computer Vision]:
Enhancement: Filtering

1. Introduction

There are many applications in computer graphics where
spatially varying filters are useful. One example is the ren-
dering of glossy reflections. Unlike perfectly reflective ma-
terials, which only require a single radiance sample in the
direction of the reflection vector, glossy materials require
integration over a solid angle. Blurring by filtering the re-
flected image with a support dependent on the surface’s
BRDF can approximate this effect. This is currently done
by pre-filtering off line, which limits the technique to static
environments.

Crow [Cro84] introduced summed-area tables to enable
more general texture filtering than was possible with mip
maps. Once generated, a summed-area table provides a
means to evaluate a spatially varying box filter in a constant
number of texture reads. Heckbert [Hec86] extended Crow’s
work to handle complex filter functions.

In this paper we present a method to rapidly generate
summed-area tables that is efficient enough to allow mul-
tiple tables to be generated every frame while maintaining

Figure 1: An image illustrating the use of a summed-area
table to render glossy planar reflections where the blurri-
ness of an object varies depending on its distance from the
reflector.

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

interactive frame rates. We demonstrate the applicability of
spatially varying filters for real-time, interactive computer
graphics through four different applications.

The paper is organized as follows: Section 2 provides
background information on summed-area tables. Next, in
Section 3 we present our technique for generating summed-
area tables. In Section 4 we describe a method for alleviat-
ing the precision requirements of summed-area tables. Sec-
tion 5 presents several example applications using summed-
area tables for real-time graphics followed by a discussion
of summed-area table performance. Then future work is pre-
sented in Section 7, and Section 8 concludes the paper.

2. Background

Originally introduced by Crow [Cro84] as an alternative to
mip maps, a summed-area table is an array in which each
entry holds the sum of the pixel values between the sample
location and the bottom left corner of the corresponding in-
put image.

Summed-area tables enable the rapid calculation of the
sum of the pixel values in an arbitrarily sized, axis-aligned
rectangle at a fixed computational cost. Figure 2 illustrates
how a summed-area table is used to compute the sum of the
values of pixels spanning a rectangular region. To find the
integral of the values in the dark rectangle, we begin with
the pre-computed integral from (0,0) to (xR, yT). We subtract
the integrals of the rectangles (0, 0) to (xR, yB) and (0, 0) to
(xL, yT). The integral of the hatched box is then added to
compensate for having been subtracted twice.

The average value of a group of pixels can be calculated
by dividing the sum by the area. Crow’s technique amounts
to convolution of an input image with a box filter. The power
lies in the fact that the filter support can be varied at a per
pixel level without increasing the cost of the computation.
Unfortunately, since the value of the sums (and thus the dy-
namic range) can get quite large, the table entries require
extended precision. The number of bits of precision needed
per component is

Ps = log2(w)+ log2(h)+Pi

where w and h are the width and height of the input image.
Ps is the precision required to hold values in the summed-
area table, and Pi is the number of bits of precision of the
input. Thus, a 256x256 texture with 8-bit components would
require a summed-area table with 24 bits of storage per com-
ponent.

Another limitation of Crow’s summed-area table tech-
nique is that it is only capable of implementing a simple
box filter. This is because only the sum of the input pixels is
stored; therefore it is not possible to directly apply a generic
filter by weighting the inputs.

In [Hec86], Heckbert extended the theory behind

X
L

X
R

Y
T

Y
B

Figure 2: (after [Crow84]) An entry in the summed-area ta-
ble holds the sum of the values from the lower left corner of
the image to the current location. To compute the sum of the
dark rectangular region, evaluate T [XR,YT]− T [XR,YB]−
T [XL,YT] + T [XL,YB] where T is the value of the entry at
(x, y)

summed-area tables to handle more complex filter func-
tions. Heckbert made two key observations. The first is that
a summed-area table can be viewed as the integral of the
input image, and the second that the sample function intro-
duced by Crow was the same as the derivative of the box fil-
ter function. By taking advantage of those observations and
the following convolution identity

f ⊗g = f ′n⊗
Z n

g

it is possible to extend summed-area tables to handle higher
order filter functions, such as the Bartlett filter, or even a
Catmull-Rom spline filter. The process is essentially one of
repeated box filtering. Higher order filters approach a Gaus-
sian, and exhibit fewer artifacts.

For instance, Bartlett filtering requires taking the second-
order box filter, and weighting it with the following coeffi-
cients:

f =
1 −2 −1

−2 4 −2
1 −2 −1

Unfortunately, a direct implementation of the Bartlett filter-
ing example requires 44 bits of precision per component, as-
suming 8-bits per component and a 256x256 input image.

In general, the precision requirements of Heckbert’s
method can be determined as follows:

Ps = n∗ (log2(w)+ log2(h))+Pi

where w and h are the width and height of the input texture,
n is the degree of the filter function, Pi is the input image’s
precision, and Ps is the required precision of the nth-degree
summed-area table.

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

A B C D

A

A

A

A+B

A+B

A+B

B+C

A+B+C

A+B+C

C+D

A+B+C+D

E

D+E

A+B+C+D+E

A+B+C+D B+C+D+E

Figure 3: The recursive doubling algorithm in 1D. On the
first pass, the value one element to the left is added to the
current value. On the second pass, the value two elements
to the left is added the current value. In general, the stride
is doubled for each pass. The output is an array whose ele-
ments are the sum of all of the elements to the left, computed
in O(log n) time.

A technique introduced by [AG02, YP03] combines mul-
tiple samples from different levels of a mip map to approx-
imate filtering. This technique suffers from several prob-
lems. First, a small step in the neighborhood around a pixel
does not necessarily introduce new data to the filter; it only
changes the weights of the input values. Second, when the
inputs do change, a large amount of data changes at the same
time, due to the mip map, which causes noticeable artifacts.
In [Dem04], the authors added noise in an attempt to make
the artifacts less noticeable; the visual quality of the result-
ing images was noticeably reduced.

3. Summed-Area Table Generation

In order to efficiently construct summed-area tables, we bor-
row a technique, called recursive doubling [DR77], often
used in high-performance and parallel computing. Using re-
cursive doubling, a parallel gather operation amongst n pro-
cessors can be performed in only log2(n) steps, where a sin-
gle step consists of each processor passing its accumulated
result to another processor.

In a similar manner, our method uses the GPU to accu-
mulate results so that only O(log n) passes are needed for
summed-area table construction. To simplify the following
description, we assume that only two texels can be read per
pass. Later in the discussion we explain how to generalize
the technique to an arbitrary number of texture reads per
pass.

Our algorithm proceeds in two phases: first a horizontal
phase, then a vertical phase. During the horizontal phase,
results are accumulated along scan lines, and during the
vertical phase, results are accumulated along columns of
pixels. The horizontal phase consists of n passes, where
n = ceil(log2(imagewidth)), and the vertical phase consists
of m passes, where m = ceil(log2(imageheight)).

For each pass we render a screen-aligned quad that covers
all pixels that do not yet hold their final sum and execute a

fragment program on every covered pixel. The input image is
stored in a texture named tA. In the first pass of the horizon-
tal phase we read two texels from tA: the one corresponding
to the pixel currently being computed and the one to the im-
mediate left. Both are added together and stored into texture
tB.

For the second pass, we swap our textures so that we are
reading from tB and writing to tA. Now the fragment pro-
gram adds the texels corresponding to the one currently be-
ing computed and the one two pixels to the left. tA now holds
the sum of four pixels.

The third pass repeats this scheme, now reading from tA
and writing to tB and summing two texels four pixels apart,
resulting in the sum of eight pixels in tB. This progression
continues for the rest of the horizontal passes until all pixels
are summed up in the horizontal direction. Note that in pass i
the leftmost 2i pixels already hold their final sum for the hor-
izontal phase and thus are not covered by the quad rendered
in this pass. Next the vertical phase proceeds in an analogous
manner. Figure 3 shows the horizontal passes needed to con-
struct a summed-area table of a 4x4 image. The following
pseudo-code summarizes the algorithm.

tA = InputImage
n = log2(width)
m = log2(height)
// horizontal phase
f or(i = 0; i < n; i = i+1)

tB[x,y] = tA[x,y]+ tA[x+2i,y]
swap(tA, tB)

// vertical phase
f or(i = 0; i < m; i = i+1)

tB[x,y] = tA[x,y]+ tA[x,y+2i]
swap(tA, tB)

// Texture tA holds the result

In practice, reading more than two texels per fragment,
per pass is possible, which reduces the number of passes
required to generate a summed-area table. Our current im-
plementation supports reading 2, 4, 8, or 16 texels per frag-
ment, per pass. This allows trading per-pass complexity with
the number of rendering passes required. Adding 16 texels
per pass enables us to generate a summed-area table from
a 256x256 image in only four passes, two for the horizon-
tal phase, and two for the vertical phase. As shown in Sec-
tion 6, adjusting the per-pass complexity helps in optimiz-
ing summed-area generation speed for different input tex-
ture sizes. The following is the pseudo-code to generate a
summed-area table when r reads per fragment are possible.

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

tA = Input Image
n = logr(width)
m = logr(height)

// horizontal phase
f or(i = 0; i < n; i = i + 1)

tB[x,y] =
tA[x,y]+
tA[x + 1∗ ri,y]+
tA[x + 2∗ ri,y]+
· · ·+
tA[x + r ∗ ri,y]

swap(tA, tB)
// vertical phase similar to
// horizonal phase
// Texture tA holds the result

Note that near the left and bottom image borders the frag-
ment program will fetch texels outside the image regions.
To ensure correct summation of the image pixels, the texture
units must be configured to use clamp to border color mode
with the border color set to 0. This way texel fetches outside
the image boundaries will not affect the sum. Alternatively,
it is possible to render a black border around the input image
and configure the texture units to use clamp to edge mode.

We have implemented our algorithm in both Direct3D and
OpenGL, with similar results. In the OpenGL implementa-
tion we used a double buffered pbuffer to mitigate the cost
of context switches. Instead of switching context between
each pass, we simply swap the front and back buffers of the
pbuffer. This allows us to efficiently ping-pong between two
textures as results are accumulated. If implemented at the
driver level, similar to the way that automatic mip-map gen-
eration is done, the costs of the passes could be mitigated
even more.

4. Improving Computational Precision

A key challenge to the usefulness of the summed-area table
approach is the loss of numerical precision, which can lead
to significant noise in the resultant image. This section first
discusses the source of such precision loss and then presents
our approach to mitigating this problem. Example images
are provided that demonstrate how our approach achieves
significant reduction in noise: up to 31 dB improvement in
signal-to-noise ratios.

4.1. Source of Precision Loss

One source of precision loss could come from the GPU’s
floating point implementation since current graphics hard-
ware does not implement IEEE standard 754 floating point
but, as shown by Hillesland [Hil05], current GPU implemen-
tations behave reasonably well.

The summed-area table approach can exhibit significant
noise because certain steps in the algorithm involve com-
puting the difference between two relatively large finite-

precision numbers with very close values. This is especially
true for pixels in the upper right portion of the image be-
cause the monotonically increasing nature of the summed-
area function implies that the table values for that region are
all quite high.

As an example, consider the images of Fig. 4, which are
256x256 images with 8-bit components. The middle and
right columns show the image after being filtered through an
"identity filter," i.e., a 1-bit filter kernel that is ideally sup-
posed to produce a resultant image that is a replica of the
original image. To avoid loss of computational precision, a
summed-area table with 24 bits of storage per component
per pixel would be sufficient, since the maximum summed-
area value at any pixel cannot exceed 256x256x256. How-
ever, the summed-area table used in this example used only
16 and 24 bit FP values. As a result, significant noise is seen
in the filtered image, with worsening image quality in the
direction of increasing xy.

4.2. Our Approach to Improving Precision

In order to mitigate the loss of computational precision, our
approach modifies the original summed-area table computa-
tion in two ways.

4.2.1. Using Signed-Offset Pixel Representation

The first modification is to represent pixel values in the orig-
inal image as signed floating-point values (e.g., values in the
range -0.5 to 0.5), as opposed to the traditional approach that
uses unsigned pixel values (from 0.0 to 1.0).

This modification improves precision in two ways: (i)
there is a 1-bit gain in precision because the sign bit now
becomes useful, and (ii) the summed-area function becomes
non-monotonic, and therefore the maximum value reached
has a relatively lower magnitude.

We have investigated two distinct methods for converting
the original image to a signed-offset representation: (i) cen-
tering the pixel values around the 50% gray level, and (ii)
centering them around the mean image pixel value. The for-
mer involves less computational overhead and gives good
precision improvement, but the latter provides even better
results with modest computational overhead.

Centering around 50% gray level. This method modifies
the original image by subtracting 0.5 from the value at ev-
ery pixel, thereby making the pixel values lie in the -0.5
to 0.5 range. The summed-area table computation proceeds
as usual, but with the understanding that the table entry at
pixel position (x,y) will now be 0.5xy less than the actual
summed-area value. The net impact is a significant gain in
precision because the table entries now have significantly
lower magnitudes, and therefore computing the differences
yields a greater precision result.

Fig. 4 demonstrates the usefulness of this approach. The

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

Figure 4: The left column shows the original input images, the middle column are reconstructions from summed-area tables
(SATs) generated using our method, and the right column are reconstructions from SATs generated with the old method. For
the first row, the SATs are constructed using 16 bit floats, for the second row the SATs are constructed using 24 bit floats, and
the final row shows a zoomed version of second row (region-of-interest highlighted)

first row shows three versions of a checkerboard. The im-
age on the right, generated using the traditional method, ex-
hibits unacceptable noise throughout much of the image. In
contrast, the middle image, generated by our method, barely
shows error.

Centering around image pixel average. While centering
pixel values around the 50% gray level proved to be quite
useful, an even better approach is to store offsets from the
image’s average pixel value. This is especially true of images

such as Lena for which the image average can be quite differ-
ent from 50% gray. For such images, centering around 50%
gray could still result in sizable magnitudes at each pixel po-
sition, thereby increasing the probability that the summed-
area values could appreciably grow in magnitude. Centering
the pixel values around the actual image average guarantees
that the summed-area value is equal to 0 both at the origin
and at the upper right corner (modulo floating-point round-
ing errors).

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

Figure 5: Environment map filtered with a spatially varying
filter.

The computational overhead of this approach is fairly
modest as the image average is easily computed in hardware
using mip mapping.

4.2.2. Using Origin-Centered Image Representation

The second modification involves anchoring the origin of the
coordinate system to the center of the image, instead of to the
bottom-left image corner. In effect, this simple modification
reduces in half the maximum values of x and y over which
summed areas are accumulated. As a result, for a given pre-
cision level, images of double the width and height can be
handled.

5. Example Applications

Since our technique is fast enough to generate summed-area
tables every frame, their use becomes feasible to generate
real-time, interactive effects. We present four example appli-
cations. The first is a method to generate glossy environmen-
tal reflections. The second application uses a summed-area
table to render glossy planar reflections, where the blurri-
ness of an object’s reflection varies depending on its distance
from the reflecting plane. The third application presents
a technique to render glossy transparency, and finally, the
fourth application, previously presented by Greene [Gre03],
renders images with a depth-of-field effect. We believe that
these applications are a compelling demonstration of the
power of real-time summed-area table generation.

5.1. Glossy Environmental Reflections

In [KVHS00], Kautz et al. presented a method for real-time
rendering of glossy reflections for static scenes. They ren-
dered a dual-paraboloid environment map and pre-filtered
it in an offline process. Instead of pre-filtering, we create a
summed-area table for each face of a dual-paraboloid map
on the fly, and use them to filter the environment map at

Figure 6: An object textured using four samples from a pair
of summed-area tables generated from an environment map
in real-time.

run time. This enables real-time, interactive environmental
glossy reflections for dynamic scenes.

Figure 5 is an image of an object where the environment
map has been filtered with a spatially varying filter function;
in this case the filter support has been modulated by another
texture. The image is rendered in real time, at a rate of over
60 frames per second. The filter function, scene geometry
and environment map can change every frame.

There are several compelling reasons for using dual-
paraboloid environment mapping over the more commonly
used cube mapping. First, Kautz et al. showed that when fil-
tering in image space, as opposed to filtering over the solid
angles, a dual-paraboloid environment map has lower er-
ror than a cube map or a spherical map. Second, it is only
necessary to generate two summed-area tables as opposed
to six summed-area tables. Finally, for large filters, a dual-
paraboloid map will require data from only two textures,
whereas it is possible that data might be required from all
six faces of a cube map.

5.1.1. Box Filtering

A coarse approximation to a glossy BRDF is a simple box
filter. A single box-filter evaluation takes four texture reads
from the summed-area table. Two evaluations are required
on current hardware when a filter is supported by both the
front and the back of a dual-paraboloid map. On future hard-
ware it may be possible to conditionally evaluate the filters
for both maps only when necessary.

As is common when storing a spherical map in a square
texture, our implementation uses the alpha channel to mark
the pixels that are in the dual-paraboloid map. A pixel is con-
sidered to be in the map if its alpha value is one. We also
use the alpha value to count the area covered by the filter.
After combining the result of the evaluation from the front
and back maps, the alpha channel holds the total count of

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

Figure 7: A set of four box filters stacked to approximate a
Phong BRDF.

summed texels, which is then used to normalize the filter
value.

The basic algorithm for rendering glossy environmental
reflections is

renderCubeMap();
generateParaboloidMapFromCubeMap();
generateSummedAreaTable(FrontMap);
generateSummedAreaTable(BackMap);
setupTextureCoordinateGeneration();

renderScene
{

f oreach fragment on reflective object:
{

f ront = evaluateSAT (FrontSAT, f ilter_size);
f ront = evaluateSAT (BackSAT, f ilter_size);

// computer filter area
f iltered.al pha = f ront.al pha + back.al pha;

// combine front and back color
result = f ront + back;

// divide by the area o f the f ilter
result/ = f iltered.al pha;

computeFinalColor(f iltered);
}

}

While our current implementation creates a dual-
paraboloid map from a cube map, it is possible to directly
generate the dual-paraboloid map by using a vertex program
to project the scene geometry as in [CHL04].

5.1.2. Box Filtering

More complex filter functions can be constructed at the cost
of more texture reads by stacking multiple box filters on top
of each other. The stacked boxes approximate the shape of
smoother filters. For a single summed-area table, each fil-
ter in the stack requires eight texture reads (four for each of

Figure 8: Example of translucency using a summed-area ta-
ble to filter the view seen through the glass.

the front and back maps). So a complex filter created from
a stack of four box filters would perform thirty-two texture
reads per fragment.

Both OpenGL and Direct3D provide a means to automati-
cally generate texture coordinates based on the normal direc-
tion and reflection direction. By combining box filters gener-
ated from both the reflection direction and the normal direc-
tion, it is possible to compute an approximation of the Phong
BRDF. Figure 7 shows an image generated using a stack of
two large box filters centered on the normal direction to ap-
proximate the diffuse component of the Phong BRDF and
a stack of two smaller box filters centered on the reflection
direction to approximate the specular component.

5.2. Glossy Planar Reflections

Since the summed-area table enables filtering with arbi-
trary support, it is relatively easy to render glossy reflections
where the blurriness of an object varies depending on the
distance of the reflected object from the reflector. This ef-
fect is often seen when an object is placed on a glossy table
top. The object’s reflection is much sharper where the object
and table top meet than elsewhere. Figure 1 shows an image
where the floor is a glossy reflector, and the blurriness of the
reflection depends on the object’s distance from the floor.

The effect is accomplished by augmenting the standard
planar reflection algorithm. The pass for rendering the re-
flected scene from the virtual viewpoint outputs both the
color and the distance to the reflection plane to a texture.
A summed-area table is generated from the color data. Then
the planar reflector is rendered from the summed-area ta-
ble, using the previously saved distance to modulate the filter
width.

5.3. Translucency

Approaches to rendering translucent materials include those
of [Arv95, Die96]. We are able to render real-time interac-

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

Figure 9: Simulated depth of field.

tive translucent objects using a summed-area table; this tech-
nique can be used to render such effects as etched and milky
glass. Figure 8 shows a scene with multiple translucent ob-
jects.

The effect is achieved by first rendering the scene, to tex-
ture memory, without the translucent objects. A summed-
area table is generated from the resulting image. Then we
render the translucent objects with a fragment program that
uses the summed-area table to blur the regions of the scene
behind the objects.

5.4. Depth of Field

In [Gre03], Greene presents a technique to render an im-
age with a depth-of-field effect using summed-area tables.
His summed-area table generation technique is problematic
since it requires that a texture be read from and written to
at the same time. Unfortunately graphics hardware — due
to its parallel streaming architecture — makes no guarantees
about the execution sequence of read-modify-write opera-
tions.

In [Demers04], a technique to render a depth of field ef-
fect was presented that used mip maps to approximate a sim-
ple filter. Because of the artifacts introduced by the mip-map
filtering technique, the authors add noise to reduce the per-
ceptible Mach bands.

Unlike mip maps, summed-area tables are able to aver-
age arbitrary rectangular sections of an image, allowing us
to implement a real-time, interactive version of the depth-
of-field effect, without having to add noise to mask filtering
artifacts. However, our implementation does have the same
drawbacks as other image filtering techniques for generating
a depth-of-field effect, such as the bleeding of sharp in-focus
objects onto blurry backgrounds. Figure 9 shows an image
rendered with depth of field. A 1024x768 image renders at
a rate of 23 frames per second. A lower resolution version
renders at much higher frame rates.

The effect is accomplished by first rendering the scene

Summed-area table size
256x256 512x512 1024x1024

Radeon
9800 XT1 3.1 ms (8) 14.2 ms (4) 70.1 ms (4)
Radeon

X800XT PE1 1.4 ms (8) 7.3 ms (4) 36.2 ms (4)
Geforce

6800 Ultra2 4.3 ms (8) 32.4 ms (4) 95.3 ms (4)
124−bit f loats 232−bit f loats

Table 1: Shortest time to generate summed-area tables of
different sizes. The number of samples per pass are given in
parentheses.

Summed-area table size
Samples/pass 256x256 512x512 1024x1024

2 2.3 ms 9.9 ms 44.3 ms
4 1.8 ms 7.3 ms 36.2 ms
8 1.4 ms 9.9 ms 45.6 ms

16 2.7 ms 12.4 ms 53.3 ms

Table 2: Time to generate summed-area tables of differ-
ent sizes using different number of samples per pass on a
Radeon X800XT Platinum Edition graphics card.

from the camera’s point-of-view and saving the color and
depth buffers to texture memory. Next a summed-area table
is generated from the saved color buffer. As in [Dem04], the
depth buffer is used to determine the circle of confusion. Fi-
nally, a screen-filling quad is rendered, and a fragment pro-
gram is used to blur the color buffer based on the circle of
confusion.

6. Summed-Area Table Generation Performance

Table 1 shows the time required to generate summed-area
tables of different sizes on a number of graphics cards using
DirectX 9. We list the shortest time we could achieve for
each card and input size along with the number of samples
per pass used to get the best performance. Table 2 shows
performance based on input size and the number of samples
per pass for one of the cards used in our test.

Our benchmark results show that finding a good balance
between the number of rendering passes and the amount of
work performed during each pass is important for the overall
performance of summed-area table generation. The optimal
tradeoff between the number of passes and per-pass cost is
largely dependent on the overhead of render target switches
and the design of the texture cache on the target platform.

Computing summed-area tables directly on the graphics
card is better than performing this computation on the CPU
for several reasons. First, the input data is already present
in GPU memory. Transferring the data to the CPU for pro-

c© The Eurographics Association and Blackwell Publishing 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh & A. Lastra / Fast Summed-Area Table Generation and its Applications

cessing and then and back again would put an unnecessary
burden on the bus and can easily become a bottleneck be-
cause many graphics drivers are unable to reach full theoret-
ical bandwidth utilization when reading back data from the
GPU [GPU]. Moreover, moving data back and forth between
GPU and CPU would break GPU-CPU parallelism because
each processor would end up waiting for new results from
the other processor.

In our opinion, the particularly good performance of
generating 256x256 summed-area table on modern graph-
ics hardware makes dynamic glossy reflections using dual-
paraboloid maps (as outlined in Section 5) very feasible.

7. Future Work

In the future we plan to quantify how closely a set of stacked
box filters can approximate an arbitrary BRDF, and develop
a set of criteria to generate the box-filter stack that best rep-
resents a given BRDF. While the techniques presented in
this paper substantially reduce the precision requirements of
summed-area tables, work is needed on techniques to reduce
them even further. Doing so will make it feasible to generate
second and third order summed-area tables, which would al-
low more complex filter functions, such as a Barlett filter or
a parabolic filter.

8. Conclusion

We have introduced a technique to rapidly generate
summed-area tables, which enable constant-time space vary-
ing box filtering. This capability can be used to simulate a
variety of effects. We demonstrate glossy environmental re-
flections, glossy planar reflections, translucency, and depth
of field.

The biggest drawback to summed-area tables is the high
demand they make on numerical precision. To ameliorate
this problem, we have developed some techniques to more
effectively use the limited precision available on current
graphics hardware.

Acknowledgements

Financial support was provided by an ATI Research fellow-
ship, the National Science Foundation under grants CCF-
0306478, and CCF-0205425. Equipment was provided by
NSF grant CNS-0303590. We would like to thank Eli Turner
for the artwork used in our demo application, and Paul Cin-
tolo who helped us with gathering performance data.

References

[AG02] ASHIKHMIN M., GHOSH A.: Simple blurry re-
flections with environment maps. J. Graph. Tools 7, 4
(2002), 3–8. 3

[Arv95] ARVO J.: Applications of irradiance tensors to the
simulation of non-lambertian phenomena. In SIGGRAPH
’95: Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1995), ACM Press, pp. 335–342. 7

[CHL04] COOMBE G., HARRIS M. J., LASTRA A.: Ra-
diosity on graphics hardware. In GI ’04: Proceedings
of the 2004 conference on Graphics interface (School of
Computer Science, University of Waterloo, Waterloo, On-
tario, Canada, 2004), Canadian Human-Computer Com-
munications Society, pp. 161–168. 7

[Cro84] CROW F. C.: Summed-area tables for texture
mapping. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1984), ACM Press,
pp. 207–212. 1, 2

[Dem04] DEMERS J.: GPU Gems. Addison Wesley, 2004,
pp. 375–390. 3, 8

[Die96] DIEFENBACH P.: Multi-pass Pipeline Render-
ing: Interaction and Realism through Hardware Provi-
sions. PhD thesis, University of Pennsylvania, Philadel-
phia, 1996. 7

[DR77] DUBOIS P., RODRIGUE G.: An analysis of the
recursive doubling algorithm. In High Speed Computer
and Algorithm Organization. 1977, pp. 299–305. 3

[GPU] Gpubench: http://graphics.stanford.edu/projects/g
pubench/. 9

[Gre03] GREENE S.: Summed area tables using graphics
hardware. Game Developers Conference, 2003. 6, 8

[Hec86] HECKBERT P. S.: Filtering by repeated integra-
tion. In SIGGRAPH ’86: Proceedings of the 13th annual
conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1986), ACM Press, pp. 315–
321. 1, 2

[Hil05] HILLESLAND K.: Image Streaming to build
Image-Based Models. PhD thesis, University of North
Carolina at Chapel Hill, 2005. 4

[KVHS00] KAUTZ J., VAZQUEZ P.-P., HEIDRICH W.,
SEIDEL H.-P.: A unified approach to prefiltered envi-
ronment maps. In Eurographics Workshop on Rendering
(2000). 6

[YP03] YANG R., POLLEFEYS M.: Multi-resolution real-
time stereo on commodity graphics hardware, 2003. 3

c© The Eurographics Association and Blackwell Publishing 2005.

