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Abstract

We present an efficient algorithm to compute image histograms
entirely on the GPU. Unlike previous implementations that use a
gather approach, we take advantage of scattering data through the
vertex shader and of high-precision blending available on modern
GPUs. This results in fewer operations executed per pixel and
speeds up the computation.

Our approach allows us to create histograms with arbitrary num-
bers of buckets in a single rendering pass, and avoids the need for
any communication from the GPU back to the CPU: The histogram
stays in GPU memory and is immediately available for further pro-
cessing.

We discuss solutions to dealing with the challenges of implement-
ing our algorithm on GPUs that have limited computational and
storage precision. Finally, we provide examples of the kinds of
graphics algorithms that benefit from the high performance of our
histogram generation approach.
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1 Introduction and Related Work

The histogram of a gray-scale image consists of a discrete array
of bins, each representing a certain gray-level range and storing the
number of pixels in the image whose gray-level falls into that range.
In other words, it defines a discrete function that maps a gray-level
range to the frequency of occurrence in the image [Gonzalez and
Woods 1992], and provides a measure of the statistical distribution
of its contributing pixels. For the remainder of this paper we will
denote N as the number of input pixels, and B as number of his-
togram bins.

Modern real-time graphics applications — such as games — com-
monly perform image processing on the rendered image in or-
der to enhance the final output. Examples include color cor-
rection [Mitchell et al. 2006], image processing and enhance-
ment [Hargreaves 2004], and high-dynamic range (HDR) tone map-
ping operators [Mitchell et al. 2006; Carucci 2006; Sousa 2005].
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Figure 1: Efficient creation of histograms on a GPU enables new
GPU-based post-processing algorithms. This screenshot shows our
prototype implementation of Ward’s Histogram Adjustment tone
mapping operator applied to a real-time 3D scene rendered with
high dynamic range. The graph below shows the histogram of the
HDR frame buffer in red, and the tone mapping function derived
from it in green (both in log-luminance space with base 10).

Histograms are an important building block in image processing
algorithms such as tone mapping operators [Larson et al. 1997],
which makes them applicable and useful for post-processing in real-
time graphics. We explain some of these examples in more detail
in section 3.

Carucci [2006] describes using histogram information for tone
mapping and for enhancing the contrast in daylight and night scenes
in the game BLACK & WHITE 2. He proposes generating the his-
togram on the CPU after reading back a downsampled version of
the framebuffer from the GPU.

The basic algorithm for creating a histogram on a general-purpose
CPU is very simple:

set array bins to 0
for each input pixel p

compute bin index i for p
increment bins[i]

Green [2005] describes an approach to GPU histogram generation
that works by rendering one quad per bucket covering the input im-
age. The pixel shader for the quad fetches an input pixel and kills
the fragment being processed if the luminance is outside the cur-
rent bucket’s brightness range. Occlusion queries issued for each



quad are used to read the count of pixels that pass the luminance
threshold test back to the CPU.

Reading GPU occlusion query results back to the CPU introduces
a synchronization point between the processors, which can hinder
parallelism and can cause stalls in the GPU pipeline. In order to
avoid stalling, occlusion query results should be read only several
frames after they were issued, which increases the latency between
rendering a frame and obtaining its histogram.

The SOURCE game engine [Valve Software 2006] uses a variant
of Green’s algorithm: Histogram generation is amortized over sev-
eral frames by only updating a single bucket per rendered frame
[Mitchell et al. 2006]. Because each bucket’s pixel count is gath-
ered from a different frame, the histogram representation available
to the CPU generally never accurately represents any single ren-
dered frame.

Fluck et al. [2006] generate histograms on the GPU by dividing
the input image into tiles whose size is determined by the number
of desired histogram bins. To compute a local histogram for each
tile, every pixel in a tile must fetch all other pixels that belong to
its tile and perform a count. A texture reduce operation is used to
add the local histograms of neighboring tiles and yields the global
histogram for the entire image after O(logN) rendering passes.

Thanks to highly optimized texture fetching hardware, GPUs have
traditionally been very performant for gather operations, and many
GPGPU algorithms are tuned to exploit this strength. Both GPU-
based histogram generation algorithms mentioned above use a
gather approach, whereas the simple CPU algorithm uses a scat-
ter approach: The output location in the bins array is dependent on
each input pixel.

Buck [2005] points out that data scattering can be implemented on
GPUs by rendering point primitives, with the scatter location com-
puted in a vertex shader. Our algorithm uses this point primitive-
based scatter approach by taking advantage of the render to ver-
tex buffer (R2VB) [Scheuermann 2006] or vertex texture fetch
(VTF) [Gerasimov et al. 2004] feature available in GPUs that sup-
port it to feed rendered image data back to the top of the graphics
pipeline. This allows us to efficiently build a complete histogram
of every rendered frame using an arbitrary number of buckets in a
single pass. Peercy et al. [2006] describes a low-level GPU pro-
gramming interface that provides access to scattering support in the
pixel shader on some GPUs.

The remainder of this paper is structured as follows: Section 2 pro-
vides a detailed explanation of our algorithm. We discuss example
applications of our GPU-based histogram in section 3. Section 4
covers experimental results, and section 5 concludes.

2 Histogram Generation

Scatter-based histogram generation consists of two sub-tasks: Bin
selection for each input pixel and accumulation of bin contents. We
represent the histogram buckets as texels in a one-dimensional ren-
derable texture. Our algorithm renders one point primitive for each
input pixel. We compute the bin index in the vertex shader and con-
vert it to an output location that maps into our 1D bin texture. The
fragment that is rasterized into our desired bin location in the his-
togram render target is accumulated by configuring the hardware
blend units to add the incoming fragment to the contents of the
render target. After scattering and accumulating all points in this
manner, the output render target will contain the desired histogram.

2.1 Histogram Bin Selection

Performing bin selection in a vertex shader requires access to
the input image pixels in this stage of the graphics pipeline. To
accomplish this, we can take advantage of either vertex texture
fetches [Gerasimov et al. 2004] — which are available on NVidia
GeForce 6 and 7 series GPUs — or of rendering the input image
pixels into a vertex buffer [Scheuermann 2006] — which is sup-
ported on ATI GPUs starting with the Radeon 9500 and up.

In the vertex texture fetch case, we store a texture coordinate ad-
dressing the corresponding pixel in the input image for each point,
so that we can explicitly fetch the pixel color in the vertex shader.
In the render to vertex buffer case, each input pixel will be directly
available to the vertex shader as a vertex attribute.

The vertex shader used to process the point primitives converts the
input color to a suitable grayscale representation (for example linear
or logarithmic luminance), maps it to the representative histogram
bin, and converts the bin index to the appropriate output coordinate.
If the input pixel’s luminance is outside the range represented by the
histogram bins, we clamp it so that it maps to either the minimum
or maximum bin.

2.2 Precision Considerations for Bin Content Accu-
mulation

Many GPUs pose limitations on which render target formats sup-
port hardware blending. Lack of blendable high-precision render
targets can limit the accuracy of the resulting histogram: If we use
an 8-bit render target to store the histogram bins, a bin is saturated
after accumulating only 256 points into it. Saturated bins distort
the true luminance distribution of the input image, and a histogram
with saturated bins violates the equality ∑i bins[i] = N. The severity
of saturation depends on the storage precision of the histogram bins
and the statistical distribution of the input data. Whether histogram
saturation poses a serious problem depends on the context of the
application in which the histogram data is used.

There are several approaches for mitigating the issues associated
with limited-precision render target formats: First, by increasing
the histogram render target size and thus using more bins, each bin
represents a smaller luminance range. This can help spread points
to more bins, reducing the total number of points that map to each
bin.

A generalization of this workaround is to generate local histograms
and combine them to the final histogram, similar to [Fluck et al.
2006]. If we create L local histograms, the point primitive with in-
dex i should be added to the local histogram with index i mod L.
Local histograms can be stored as additional texels rows in the
histogram render target. As an optimization each individual color
channel in the output render target should be used to store a local
histogram. This way, up to four local histograms can be stored per
texel row. To get the final histogram all local histograms are added,
either in a single rendering pass, or using multiple texture reduction
passes. Because these render passes use a gather approach to sum
the corresponding bins of all local histograms and do not rely on
hardware blending, we have more flexibility in choosing an output
render target format with suitably high precision to avoid saturating
bins, such as 16-bit fixed point, or 32-bit floating point.

GPUs that support the shader model 3 profile specified in the Di-
rect3D 9 API provide support for blendable 16-bit floating point
(fp16) render targets. Even with this format, we can only take ad-
vantage of 11 bits of precision available in the mantissa (10 bits
+ 1 hidden bit). The reason for this are precision issues inherent



in floating point representations when trying to add numbers with
large differences in magnitude [Goldberg 1991]. If we keep incre-
menting a histogram bin with fp16 precision by 1, we will start
introducing errors as the accumulated value exceeds 2048.

Modern GPUs that implement the Direct3D 10 specification
[Blythe 2006] support blending into fixed-point (16 or 32 bit) and
32-bit floating point render targets. Using these data formats for
the histogram render target is preferable, because they provide am-
ple precision to avoid overflowing the bins during accumulation.

2.3 Efficiency

As outlined in section 1, Green’s histogram generation algorithm
performs one render pass per bucket, so its asymptotic complexity
is O(NB). That of Fluck et al.’s algorithm is also O(NB), because
it requires B/4 texture fetches for each input pixel. Assuming we
have enough precision in the histogram render target to be able to
ignore the workarounds described in section 2.2, the asymptotic
complexity of our histogram generation algorithm is O(N). The
high degree of parallelism in GPUs diminishes the significance of
the factor N — which represents the number of input pixels — for
the overall running time.

Our algorithm has the disadvantage that the majority of its oper-
ations happen in the vertex shading units, which generally have
a lower level of parallelism than the pixel processing pipeline on
non-unified graphics architectures. On a unified GPU architecture
such as the GPU in Microsoft’s XBox 360 game console — where
generic shader ALU resources can be allocated to either pixel or
vertex processing depending on the relative load — this disadvan-
tage disappears: Since the pixel shader is trivial — it just returns
a constant — most shading resources can be allocated to execut-
ing the vertex shader that scatters points into the histogram render
target.

Compared to Green’s algorithm, our approach avoids the synchro-
nization issues of occlusion query results passed from the GPU
back to the CPU. Moreover, if the histogram is needed for sub-
sequent operations on the GPU, it avoids passing the assembled
histogram back to the GPU.

3 Applications

To verify the applicability of our algorithm to real-world image
processing tasks that could be used in the post-processing stage
of a real-time 3D applications, we implemented two types of ap-
plications: Histogram equalization and tone mapping operators for
high-dynamic range images.

3.1 Histogram Equalization

Histogram equalization is an image processing technique for en-
hancing the local contrast of an image by remapping the pixel
values so that each pixel value is represented with the same fre-
quency [Gonzalez and Woods 1992]. This remapping increases the
contrast of luminance ranges that are more frequently represented
in the input image. Carucci [2006] mentions histogram equalization
in the context of post-processing for a computer game.

A good approximation for a discretized histogram equalization
remapping function is T [i] = 1

N ∑
i
j=1 bins[ j], which is just the nu-

merical integration of the histogram [Gonzalez and Woods 1992].

Figure 2: Results of histogram equalization performed on the GPU
using our histogram generation and integration algorithm. Image A
shows the unprocessed image, which exhibits low contrast. Im-
age B is histogram-equalized using only a luminance histogram.
Image C shows the result after performing histogram equalization
independently on the R, G, and B color channels.

T [i] can be computed efficiently from the histogram in O(logB)
rendering passes using the GPU-based algorithm for creating
summed-area tables outlined in [Hensley et al. 2005]. Just like the
histogram, T [i] is stored in a 1D texture. This way, applying the lu-
minance remapping function to the input image reduces to a simple
texture lookup based on the input pixel value.

For a color image, histogram equalization can be applied either to
the gray-scale luminance, or independently to each color channel.
Figure 2 shows an example photograph before and after histogram
equalization processing on the GPU using both approaches.

3.2 Tone Mapping

High-dynamic range (HDR) imaging and rendering tries to capture
the dynamic range of illumination observed in real-world scenes.
In this context, tone mapping operators are used to map the mea-
sured or simulated scene to the representation on a display device
with limited dynamic range, while maintaining a good visual match
between them [Reinhard et al. 2006].

3.2.1 Auto-Exposure Driven by Histogram Percentiles

The histogram equalization remapping table T is the logical equiv-
alent of a cumulative distribution function in the field of statistics.
This makes it easy to find the median and – more generally – the
nth percentile of the histogram by using a shader to perform a bi-
nary search on the texture used to store T . Carucci [2006] explains
how these percentiles can be used to drive a simple auto-exposure
tone mapping operator. Using our histogram generation algorithm,
Carucci’s tone mapping approach is feasible to use on current hard-
ware.



Input Algorithm Histogram Size
Size 64 256 1024

2562

Scatter (R2VB) 0.5 ms 0.25 ms 0.13 ms
Scatter (VTF) 1.09 ms 1.09 ms 1.09 ms

Fluck et al. 0.51 ms 1.06 ms 4.05 ms
Green 2.34 ms 7.02 ms 25.95 ms

5122

Scatter (R2VB) 2.55 ms 1.37 ms 0.82 ms
Scatter (VTF) 4.43 ms 4.38 ms 4.38 ms

Fluck et al. 1.34 ms 4.36 ms 16.27 ms
Green 4.34 ms 12.86 ms 44.94 ms

10242

Scatter (R2VB) 10.97 ms 5.87 ms 3.52 ms
Scatter (VTF) 17.71 ms 17.56 ms 17.56 ms

Fluck et al. 5.11 ms 17.21 ms 64.67 ms
Green 12.1 ms 43.27 ms 166.72 ms

Table 1: Histogram generation benchmark results comparing dif-
ferent algorithms. (See also figure 3)

3.2.2 Ward Histogram Adjustment

Ward’s histogram adjustment tone mapping operator — described
in [Larson et al. 1997] — uses histogram information in logarithmic
luminance space to derive a tone mapping curve for HDR images.
We only consider the simpler histogram adjustment method with a
linear ceiling, described in section 4.4 of the original paper. The
histogram adjustment method works similarly to naive histogram
equalization, but attempts to avoid the problem of expanding and
exaggerating contrast in dense regions of the histogram. In order
to limit contrast, the authors suggest creating a modified histogram
from the input histogram, so that no histogram bin exceeds a con-
stant ceiling. The value of this ceiling is defined by the dynamic
range of the input data and that of the display device. The tone map-
ping curve is then obtained by numerically integrating the modified
histogram and used to remap input luminance to display luminance,
just like in the histogram equalization case.

Our prototype implementation of this tone mapping operator cre-
ates a log-luminance histogram with 1024 bins from a downsam-
pled version of the HDR back buffer. Our next step is to compute
the limiting ceiling value and apply it while numerically integrating
the histogram. Because the ceiling depends on the sum of all his-
togram bins, and clamping the histogram bins changes this sum, the
ceiling changes as well. Larson et al. [1997] suggest iterating the
clamping and integration step until the change in the ceiling value
falls below a threshold. For simplicity, our implementation per-
forms a fixed number of iterations. The final step consists of con-
verting the full-resolution back buffer to the displayable range by
applying the tone mapping curve as a lookup texture for the input
luminance. Our implementation for computing the tone mapping
curve has negligible impact on the performance of our test scene,
which renders at about 40 to 50 frames per second.

4 Results

We compared the performance of our scatter-based histogram gen-
eration algorithm to our own implementations of the algorithms of
Fluck et al. and Green. Our test system used a Pentium 4 CPU
(3 GHz), 1 GB of RAM, and an ATI Radeon X1900XT GPU. Be-
cause this GPU does not support vertex texture fetch, we bench-
marked the version of our algorithm using vertex texture fetch on
an NVidia Geforce 7800GTX GPU. Therefore the timing results
for the vertex texture fetch implementation cannot be compared di-
rectly to the other results. Our implementation of Fluck et al.’s
algorithm stores the histogram data in 16-bit fixed-point render tar-
gets, while our scatter algorithm uses 16-bit floating point render
targets to store the histogram.

Figure 3: Comparison of histogram generation performance for the
tested algorithms. Our algorithm’s execution time scaling is better
than constant with regards to the histogram size, giving it a clear
advantage over the other algorithms, which scale linearly with his-
togram size.

Our benchmark test creates a luminance histogram of an 8-bit
RGBA source render target that contains a static image. Table 1
lists the execution measured times for different input image sizes
and histogram sizes. Figure 4 shows the histogram of the image we



Figure 4: Histogram of the image used for performance tests.

used for our performance measurements.

The results reveal that Fluck’s outperforms Green’s algorithm by
a factor of 2.4 to 6.6. Thanks to the high degree of parallelism in
the pixel processing pipeline Fluck’s algorithm also outperforms
our scatter-based algorithm for histograms with 64 bins, but for
larger histogram sizes it is bound by its large number of texture
fetches. For a histogram size of 512 buckets, the render to vertex
buffer version of our algorithm is roughly 2.9 to 4.2 times faster
than Fluck’s. For a 1024-bucket histogram, the execution time dif-
ference increases to a factor of 18.4 to 31.2.

When implemented using vertex texture fetches, our algorithm ex-
hibits the expected constant running time with regards to the his-
togram size: Performance is bound by the input image size. How-
ever, when using the render to vertex buffer approach to recycle im-
age data to the vertex shader, our algorithm exhibits sub-constant
performance with regards to histogram size on the test hardware:
The time to generate the histogram decreases as the number of his-
togram buckets increases. We hypothesize that this is due to the
algorithm being limited by the performance of the blending units,
which have to serialize a large number of fragments covering the
same sample location in a small histogram render target. This
bottleneck makes the processing time of our algorithm dependent
on the distribution of the input data, which is not the case for the
gather-based algorithms.

The blending bottleneck can be mitigated by always creating a large
histogram. If a smaller number of histogram buckets is neces-
sary for further processing, the large histogram can be reduced by
adding neighboring buckets with a cheap render pass. We measured
0.026 ms as the additional overhead of this reduction step (reduc-
ing from 1024 to 64 bins), which makes this two-step approach the
fastest implementation in all cases covered by our tests.

In the context of using histograms to aid in post-processing the ren-
dered image in a real-time application, the particularly high perfor-
mance of our algorithm for small input data sizes is encouraging:
Because the histogram of an image and that of a scaled version
of the same image is roughly the same — except for a scale fac-
tor — it is often preferable to decrease the resolution of the ren-
dered image and then create a histogram from the smaller version
instead of building the histogram directly from the full-resolution
image. Moreover, for applications that benefit from it, the high per-
formance of our algorithm makes it feasible to run it three times on
the input data in order to obtain separate histograms for the R, G,
and B color channels.

5 Conclusions and Future Work

In this paper, we have presented a new GPU-based algorithm
for generating histograms that outperforms previous algorithms by
over an order of magnitude for large histograms. We have outlined
solutions to the issue of limited precision in the accumulation stage,
which are necessary for a robust implementation of our algorithm
on GPUs that don’t provide support for hardware blending into a

high-precision render target format. Finally, we provided examples
of how scene post-processing in real-time 3D applications can ben-
efit from histogram information.

In the future, we would like to explore additional uses for histogram
information in real-time graphics. It would also be interesting to in-
vestigate if point primitive scattering is applicable to other GPGPU
algorithms, and whether it would provide a performance benefit in
these cases.
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